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Exercise 13

Using spherical coordinates and the orthonormal (orthogonal normalized) vectors eρ, eθ, and eϕ
[see Figure 1.4.8(b)],

(a) express each of eρ, eθ, and eϕ in terms of i, j, k and (x, y, z); and

(b) calculate eθ × j and eϕ × j both analytically and geometrically.

Solution

The relevant part of Figure 1.4.8 is shown here.

Start by calculating the radial unit vector.
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The azimuthal unit vector is perpendicular to the radial unit vector in the xy-plane, which means
their dot product is zero.
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Finally, the polar unit vector can be obtained by taking the cross product of eθ and eρ.
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Use these formulas to determine the desired cross products.
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