## Exercise 13

Using spherical coordinates and the orthonormal (orthogonal normalized) vectors $\mathbf{e}_{\rho}, \mathbf{e}_{\theta}$, and $\mathbf{e}_{\phi}$ [see Figure 1.4.8(b)],
(a) express each of $\mathbf{e}_{\rho}, \mathbf{e}_{\theta}$, and $\mathbf{e}_{\phi}$ in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$ and $(x, y, z)$; and
(b) calculate $\mathbf{e}_{\theta} \times \mathbf{j}$ and $\mathbf{e}_{\phi} \times \mathbf{j}$ both analytically and geometrically.

## Solution

The relevant part of Figure 1.4.8 is shown here.



Start by calculating the radial unit vector.

$$
\mathbf{e}_{\rho}=\frac{\boldsymbol{\rho}}{\|\boldsymbol{\rho}\|}=\frac{(x, y, z)}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{(x, y, z)}{\rho}=\left(\frac{x}{\rho}, \frac{y}{\rho}, \frac{z}{\rho}\right)=\frac{x}{\rho} \mathbf{i}+\frac{y}{\rho} \mathbf{j}+\frac{z}{\rho} \mathbf{k}
$$

The azimuthal unit vector is perpendicular to the radial unit vector in the $x y$-plane, which means their dot product is zero.

$$
\mathbf{e}_{\theta} \cdot \frac{(x, y, 0)}{\sqrt{x^{2}+y^{2}}}=0 \quad \Rightarrow \quad \mathbf{e}_{\theta}=\frac{( \pm y, \mp x, 0)}{\sqrt{x^{2}+y^{2}}}
$$

Since $\mathbf{e}_{\theta}$ points to the upper left, we choose

$$
\mathbf{e}_{\theta}=\frac{(-y, x, 0)}{\sqrt{x^{2}+y^{2}}}=\frac{(-y, x, 0)}{r}=\left(-\frac{y}{r}, \frac{x}{r}, 0\right)=-\frac{y}{r} \mathbf{i}+\frac{x}{r} \mathbf{j} .
$$

Finally, the polar unit vector can be obtained by taking the cross product of $\mathbf{e}_{\theta}$ and $\mathbf{e}_{\rho}$.

$$
\mathbf{e}_{\phi}=\mathbf{e}_{\theta} \times \mathbf{e}_{\rho}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\frac{y}{r} & \frac{x}{r} & 0 \\
\frac{x}{\rho} & \frac{y}{\rho} & \frac{z}{\rho}
\end{array}\right|=\frac{1}{r \rho}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-y & x & 0 \\
x & y & z
\end{array}\right|=\frac{1}{r \rho}\left[x z \mathbf{i}+y z \mathbf{j}-\left(x^{2}+y^{2}\right) \mathbf{k}\right]=\frac{x z}{r \rho} \mathbf{i}+\frac{y z}{r \rho} \mathbf{j}-\frac{r}{\rho} \mathbf{k}
$$

Use these formulas to determine the desired cross products.

$$
\begin{aligned}
\mathbf{e}_{\theta} \times \mathbf{j} & =\left(-\frac{y}{r} \mathbf{i}+\frac{x}{r} \mathbf{j}\right) \times \mathbf{j} \\
& =-\frac{y}{r}(\mathbf{i} \times \mathbf{j})+\frac{x}{r}(\mathbf{j} \times \mathbf{j}) \\
& =-\frac{y}{r}(\mathbf{k}) \\
& =-\frac{y}{r} \mathbf{k} \\
\mathbf{e}_{\phi} \times \mathbf{j} & =\left(\frac{x z}{r \rho} \mathbf{i}+\frac{y z}{r \rho} \mathbf{j}-\frac{r}{\rho} \mathbf{k}\right) \times \mathbf{j} \\
& =\frac{x z}{r \rho}(\mathbf{i} \times \mathbf{j})+\frac{y z}{r \rho}(\mathbf{j} \times \mathbf{j})-\frac{r}{\rho}(\mathbf{k} \times \mathbf{j}) \\
& =\frac{x z}{r \rho}(\mathbf{k})-\frac{r}{\rho}(-\mathbf{i}) \\
& =\frac{r}{\rho} \mathbf{i}+\frac{x z}{r \rho} \mathbf{k}
\end{aligned}
$$

